6 research outputs found

    SSL for Auditory ERP-Based BCI

    Get PDF
    A brain–computer interface (BCI) is a communication tool that analyzes neural activity and relays the translated commands to carry out actions. In recent years, semi-supervised learning (SSL) has attracted attention for visual event-related potential (ERP)-based BCIs and motor-imagery BCIs as an effective technique that can adapt to the variations in patterns among subjects and trials. The applications of the SSL techniques are expected to improve the performance of auditory ERP-based BCIs as well. However, there is no conclusive evidence supporting the positive effect of SSL techniques on auditory ERP-based BCIs. If the positive effect could be verified, it will be helpful for the BCI community. In this study, we assessed the effects of SSL techniques on two public auditory BCI datasets—AMUSE and PASS2D—using the following machine learning algorithms: step-wise linear discriminant analysis, shrinkage linear discriminant analysis, spatial temporal discriminant analysis, and least-squares support vector machine. These backbone classifiers were firstly trained by labeled data and incrementally updated by unlabeled data in every trial of testing data based on SSL approach. Although a few data of the datasets were negatively affected, most data were apparently improved by SSL in all cases. The overall accuracy was logarithmically increased with every additional unlabeled data. This study supports the positive effect of SSL techniques and encourages future researchers to apply them to auditory ERP-based BCIs

    Portable Drowsiness Detection through Use of a Prefrontal Single-Channel Electroencephalogram

    No full text
    Drowsiness detection has been studied in the context of evaluating products, assessing driver alertness, and managing office environments. Drowsiness level can be readily detected through measurement of human brain activity. The electroencephalogram (EEG), a device whose application relies on adhering electrodes to the scalp, is the primary method used to monitor brain activity. The many electrodes and wires required to perform an EEG place considerable constraints on the movement of users, and the cost of the device limits its availability. For these reasons, conventional EEG devices are not used in practical studies and businesses. Many potential practical applications could benefit from the development of a wire-free, low-priced device; however, it remains to be elucidated whether portable EEG devices can be used to estimate human drowsiness levels and applied within practical research settings and businesses. In this study, we outline the development of a drowsiness detection system that makes use of a low-priced, prefrontal single-channel EEG device and evaluate its performance in an offline analysis and a practical experiment. Firstly, for the development of the system, we compared three feature extraction methods: power spectral density (PSD), autoregressive (AR) modeling, and multiscale entropy (MSE) for detecting characteristics of an EEG. In order to efficiently select a meaningful PSD, we utilized step-wise linear discriminant analysis (SWLDA). Time-averaging and robust-scaling were used to fit the data for pattern recognition. Pattern recognition was performed by a support vector machine (SVM) with a radial basis function (RBF) kernel. The optimal hyperparameters for the SVM were selected by the grind search method so as to increase drowsiness detection accuracy. To evaluate the performance of the detections, we calculated classification accuracy using the SVM through 10-fold cross-validation. Our model achieved a classification accuracy of 72.7% using the PSD with SWLDA and the SVM. Secondly, we conducted a practical study using the system and evaluated its performance in a practical situation. There was a significant difference (* p < 0.05) between the drowsiness-evoked task and concentration-needed task. Our results demonstrate the efficacy of our low-priced portable drowsiness detection system in quantifying drowsy states. We anticipate that our system will be useful to practical studies with aims as diverse as measurement of classroom mental engagement, evaluation of movies, and office environment evaluation

    Carbon Nanotube Synthesis via the Calciothermic Reduction of Carbon Dioxide with Iron Additives

    Get PDF
    The novel fabrication of multi-walled carbon nanotube (MWCNT)/cementite (Fe3C) nanocomposites was demonstrated via the calciothermic reduction of carbon dioxide (CO2) through electrolysis in molten CaCl2/CaO with iron additives at 1173 K. In this technique, CO2 generated from a graphite anode is reduced to carbon with a metallic calcium reductant formed on a graphite cathode via electrolysis in molten salt. Calciothermic reduction without iron additives resulted in the formation of onion-like carbons (OLCs) with spherical graphite layers and thin graphite sheets. In contrast, MWCNT/Fe3C nanocomposites and OLCs were successfully fabricated via calciothermic reduction with iron additives through their catalytic activities
    corecore